Plasticity versus stability across the human cortical visual connectome
Whether and how the balance between plasticity and stability varies across the brain is an important open question. Within a processing hierarchy, it is thought that plasticity is increased at higher levels of cortical processing, but direct quantitative comparisons between low- and high-level plast...
Gespeichert in:
Veröffentlicht in: | Nature communications 2019-07, Vol.10 (1), p.3174-8, Article 3174 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Whether and how the balance between plasticity and stability varies across the brain is an important open question. Within a processing hierarchy, it is thought that plasticity is increased at higher levels of cortical processing, but direct quantitative comparisons between low- and high-level plasticity have not been made so far. Here, we address this issue for the human cortical visual system. We quantify plasticity as the complement of the heritability of resting-state functional connectivity and thereby demonstrate a non-monotonic relationship between plasticity and hierarchical level, such that plasticity decreases from early to mid-level cortex, and then increases further of the visual hierarchy. This non-monotonic relationship argues against recent theory that the balance between plasticity and stability is governed by the costs of the “coding-catastrophe”, and can be explained by a concurrent decline of short-term adaptation and rise of long-term plasticity up the visual processing hierarchy.
It is thought that higher cortical areas are more plastic than lower ones, but there is little direct evidence for this. Here, the authors show that plasticity (defined as lower heritability) of functional connectivity decreases from early to mid-level visual cortex, and then increases further up the visual hierarchy. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-019-11113-z |