Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data

DNA base modifications, such as C5-methylcytosine (5mC) and N6-methyldeoxyadenosine (6mA), are important types of epigenetic regulations. Short-read bisulfite sequencing and long-read PacBio sequencing have inherent limitations to detect DNA modifications. Here, using raw electric signals of Oxford...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-06, Vol.10 (1), p.2449-11, Article 2449
Hauptverfasser: Liu, Qian, Fang, Li, Yu, Guoliang, Wang, Depeng, Xiao, Chuan-Le, Wang, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:DNA base modifications, such as C5-methylcytosine (5mC) and N6-methyldeoxyadenosine (6mA), are important types of epigenetic regulations. Short-read bisulfite sequencing and long-read PacBio sequencing have inherent limitations to detect DNA modifications. Here, using raw electric signals of Oxford Nanopore long-read sequencing data, we design DeepMod, a bidirectional recurrent neural network (RNN) with long short-term memory (LSTM) to detect DNA modifications. We sequence a human genome HX1 and a Chlamydomonas reinhardtii genome using Nanopore sequencing, and then evaluate DeepMod on three types of genomes ( Escherichia coli , Chlamydomonas reinhardtii and human genomes). For 5mC detection, DeepMod achieves average precision up to 0.99 for both synthetically introduced and naturally occurring modifications. For 6mA detection, DeepMod achieves ~0.9 average precision on Escherichia coli data, and have improved performance than existing methods on Chlamydomonas reinhardtii data. In conclusion, DeepMod performs well for genome-scale detection of DNA modifications and will facilitate epigenetic analysis on diverse species. DNA modification generates unique electric signals in Oxford Nanopore sequencing data but the signals can be complicated to decipher. Here, the authors develop a deep learning framework, DeepMod, to detect DNA base modifications including 5mC and 6mA using Nanopore sequencing data
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-10168-2