Extraction of Spectral Information from Airborne 3D Data for Assessment of Tree Species Proportions

With the rapid development of photogrammetric software and accessible camera technology, land surveys and other mapping organizations now provide various point cloud and digital surface model products from aerial images, often including spectral information. In this study, methods for colouring the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2021-02, Vol.13 (4), p.720
Hauptverfasser: Bohlin, Jonas, Wallerman, Jörgen, Fransson, Johan E. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the rapid development of photogrammetric software and accessible camera technology, land surveys and other mapping organizations now provide various point cloud and digital surface model products from aerial images, often including spectral information. In this study, methods for colouring the point cloud and the importance of different metrics were compared for tree species-specific estimates at a coniferous hemi-boreal test site in southern Sweden. A total of three different data sets of aerial image-based products and one multi-spectral lidar data set were used to estimate tree species-specific proportion and stem volume using an area-based approach. Metrics were calculated for 156 field plots (10 m radius) from point cloud data and used in a Random Forest analysis. Plot level accuracy was evaluated using leave-one-out cross-validation. The results showed small differences in estimation accuracy of species-specific variables between the colouring methods. Simple averages of the spectral metrics had the highest importance and using spectral data from two seasons improved species prediction, especially deciduous proportion. Best tree species-specific proportion was estimated using multi-spectral lidar with 0.22 root mean square error (RMSE) for pine, 0.22 for spruce and 0.16 for deciduous. Corresponding RMSE for aerial images was 0.24, 0.23 and 0.20 for pine, spruce and deciduous, respectively. For the species-specific stem volume at plot level using image data, the RMSE in percent of surveyed mean was 129% for pine, 60% for spruce and 118% for deciduous.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs13040720