Interferometric Measurement of the Liquid-Phase Temperature Field around an Isolated Boiling Bubble
In this study, high-speed digital interferometry was used to measure heat transfer from the liquid phase to an isolated boiling bubble on a MEMS boiling sensor. The interferometric measurement results indicated variations in the macroscopic thermal field around the isolated boiling bubble, such as d...
Gespeichert in:
Veröffentlicht in: | Journal of Thermal Science and Technology 2012, Vol.7(3), pp.463-474 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, high-speed digital interferometry was used to measure heat transfer from the liquid phase to an isolated boiling bubble on a MEMS boiling sensor. The interferometric measurement results indicated variations in the macroscopic thermal field around the isolated boiling bubble, such as development of a superheated liquid layer on the heating wall, swelling of the superheated liquid layer in the bubble growth process, hot wake accompanied by a rising bubble, and thermal boundary layer around the bubble indicating condensation in subcooled boiling. However, the interferometry could not detect the positive temperature gradient driving the evaporation near the liquid-vapor interface during the bubble growth process, because the spatial resolution of about thirty microns was insufficient. The thickness of the boundary layer driving the evaporation was estimated to be a few dozen microns by a two-dimensional heat transfer simulation with the experimental results as calculation conditions. Finally, an improvement plan of the high-speed interferometer based on the result of the heat transfer analysis was presented. |
---|---|
ISSN: | 1880-5566 1880-5566 |
DOI: | 10.1299/jtst.7.463 |