The synergistic effect of the triglyceride-glucose index and serum uric acid on the prediction of major adverse cardiovascular events after coronary artery bypass grafting: a multicenter retrospective cohort study
Elevated serum uric acid (SUA) is regarded as a risk factor for the development of cardiovascular diseases. Triglyceride-glucose (TyG) index, a novel surrogate for insulin resistance (IR), has been proven to be an independent predictor for adverse cardiac events. However, no study has specifically f...
Gespeichert in:
Veröffentlicht in: | Cardiovascular Diabetology 2023-05, Vol.22 (1), p.103-12, Article 103 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Elevated serum uric acid (SUA) is regarded as a risk factor for the development of cardiovascular diseases. Triglyceride-glucose (TyG) index, a novel surrogate for insulin resistance (IR), has been proven to be an independent predictor for adverse cardiac events. However, no study has specifically focused on the interaction between the two metabolic risk factors. Whether combining the TyG index and SUA could achieve more accurate prognostic prediction in patients undergoing coronary artery bypass grafting (CABG) remains unknown.
This was a multicenter, retrospective cohort study. A total of 1225 patients who underwent CABG were included in the final analysis. The patients were grouped based on the cut-off value of the TyG index and the sex-specific criteria of hyperuricemia (HUA). Cox regression analysis was conducted. The interaction between the TyG index and SUA was estimated using relative excess risk due to interaction (RERI), attributable proportion (AP), and synergy index (SI). The improvement of model performance yielded by the inclusion of the TyG index and SUA was examined by C-statistics, net reclassification improvement (NRI) and integrated discrimination improvement (IDI). The goodness-of-fit of models was evaluated using the Akaike information criterion (AIC), Bayesian information criterion (BIC) and χ
likelihood ratio test.
During follow-up, 263 patients developed major adverse cardiovascular events (MACE). The independent and joint associations of the TyG index and SUA with adverse events were significant. Patients with higher TyG index and HUA were at higher risk of MACE (Kaplan-Meier analysis: log-rank P |
---|---|
ISSN: | 1475-2840 1475-2840 |
DOI: | 10.1186/s12933-023-01838-z |