Vehicle Rollover Warning and Control Based on Attitude Detection and Fuzzy PID

Car rollovers are a class of serious traffic accidents that can easily cause heavy casualties and property damage, particularly for special operation vehicles. To enhance the driving stability of vehicles on forest roads, we developed a control strategy for wire-controlled auxiliary braking based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2023-04, Vol.13 (7), p.4339
Hauptverfasser: Wang, Ruiyang, Xu, Xiangbo, Chen, Shao, Guo, Ningyan, Yu, Zhibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Car rollovers are a class of serious traffic accidents that can easily cause heavy casualties and property damage, particularly for special operation vehicles. To enhance the driving stability of vehicles on forest roads, we developed a control strategy for wire-controlled auxiliary braking based on body-attitude detection and the overall design of the system. Moreover, the control system was further investigated and developed. A three-degrees-of-freedom (3-DOF) vehicle dynamics model with longitudinal, lateral, and lateral tilt was developed based on actual-vehicle test data. The lateral load-transfer rate (LTR) of the vehicle was selected as the early warning algorithm for vehicle rollover; the differential braking of the vehicle was realized by adjusting the pressure of the wheel cylinders; and automatic speed reduction was achieved according to the rollover attitude of the vehicle by combining the fuzzy-PID control algorithm. Finally, a vehicle dynamics model was developed, and the results verified the effectiveness of the anti-rollover control strategy under extreme operating conditions.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13074339