A delta-radiomic lymph node model using dynamic contrast enhanced MRI for the early prediction of axillary response after neoadjuvant chemotherapy in breast cancer patients

The objective of this paper is to explore the value of a delta-radiomic model of the axillary lymph node (ALN) using dynamic contrast-enhanced (DCE) MRI for early prediction of the axillary pathological complete response (pCR) of breast cancer patients after neoadjuvant chemotherapy (NAC). A total o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC cancer 2023-01, Vol.23 (1), p.15-15, Article 15
Hauptverfasser: Liu, Shasha, Du, Siyao, Gao, Si, Teng, Yuee, Jin, Feng, Zhang, Lina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this paper is to explore the value of a delta-radiomic model of the axillary lymph node (ALN) using dynamic contrast-enhanced (DCE) MRI for early prediction of the axillary pathological complete response (pCR) of breast cancer patients after neoadjuvant chemotherapy (NAC). A total of 120 patients with ALN-positive breast cancer who underwent breast MRI before and after the first cycle of NAC between October 2018 and May 2021 were prospectively included in this study. Patients were divided into a training (n = 84) and validation (n = 36) cohort based on the temporal order of their treatments. Radiomic features were extracted from the largest slice of targeted ALN on DCE-MRI at pretreatment and after one cycle of NAC, and their changes (delta-) were calculated and recorded. Logistic regression was then applied to build radiomic models using the pretreatment (pre-), first-cycle(1st-), and changes (delta-) radiomic features separately. A clinical model was also built and combined with the radiomic models. The models were evaluated by discrimination, calibration, and clinical application and compared using DeLong test. Among the three radiomic models, the ALN delta-radiomic model performed the best with AUCs of 0.851 (95% CI: 0.770-0.932) and 0.822 (95% CI: 0.685-0.958) in the training and validation cohorts, respectively. The clinical model yielded moderate AUCs of 0.742 (95% CI: 0.637-0.846) and 0.723 (95% CI: 0.550-0.896), respectively. After combining clinical features to the delta-radiomics model, the efficacy of the combined model (AUC = 0.932) in the training cohort was significantly higher than that of both the delta-radiomic model (Delong p = 0.017) and the clinical model (Delong p 
ISSN:1471-2407
1471-2407
DOI:10.1186/s12885-022-10496-5