ION-FAST as the NIRFI’s Ionospheric Diagnostic Platform

In December 2021, we presented a prototype of a fast ionosonde for vertical sounding based on the usage of publicly available radio-electronic components. This approach led to a major reduction in the cost of the created device. We called our development ION-FAST, which characterizes the key feature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmosphere 2024-02, Vol.15 (2), p.188
Hauptverfasser: Moiseev, Sergey P., Shindin, Alexei V., Grekhneva, Kseniya K., Pavlova, Viktoriya A., Timukin, Nikita S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In December 2021, we presented a prototype of a fast ionosonde for vertical sounding based on the usage of publicly available radio-electronic components. This approach led to a major reduction in the cost of the created device. We called our development ION-FAST, which characterizes the key feature of the ionosonde: the possibility of continuous operation at a speed of one ionogram per second, which is required to study the rapid processes of redistribution of the electron concentration during heating experiments. In May 2022, an ionosonde for vertical sounding of the ionosphere, developed at the Radiophysical Research Institute of Nizhni Novgorod (NIRFI), was put into continuous operation at the SURA facility. This report provides a description of the improvements made to the prototype over the last year and the path to be passed from idea to implementation. The results of the first months of the prototype’s operation (especially the results of the supporting optic experiment in August 2022), as well as prospects for further use and modernization, are provided. In addition, the realization of the oblique chirp-sounding receiver prototype as an extension of the proposed diagnostic platform’s functionality, including the first results, is presented.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos15020188