Dual Frobenius manifolds of minimal gravity on disk

A bstract Liouville field theory approach to 2-dimensional gravity possesses the duality ( b ↔ b −1 ). The matrix counterpart of minimal gravity ℳ( q ,  p ) ( q < p co-prime) is effectively described on A q −1 Frobenius manifold, which may exhibit a similar duality p ↔ q , and allow a description...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2018-03, Vol.2018 (3), p.1-26, Article 134
Hauptverfasser: Bawane, Aditya, Muraki, Hisayoshi, Rim, Chaiho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract Liouville field theory approach to 2-dimensional gravity possesses the duality ( b ↔ b −1 ). The matrix counterpart of minimal gravity ℳ( q ,  p ) ( q < p co-prime) is effectively described on A q −1 Frobenius manifold, which may exhibit a similar duality p ↔ q , and allow a description on A p −1 Frobenius manifold. We have positive results from the bulk one-point and the bulk-boundary two-point correlations on disk that the dual description of the Frobenius manifold works for the unitary series ℳ( q ,  q  + 1). However, for the Lee-Yang series ℳ(2, 2 q  + 1) on disk the duality is checked only partially. The main difficulty lies in the absence of a canonical description of trace in the continuum limit.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP03(2018)134