Dual Frobenius manifolds of minimal gravity on disk
A bstract Liouville field theory approach to 2-dimensional gravity possesses the duality ( b ↔ b −1 ). The matrix counterpart of minimal gravity ℳ( q , p ) ( q < p co-prime) is effectively described on A q −1 Frobenius manifold, which may exhibit a similar duality p ↔ q , and allow a description...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2018-03, Vol.2018 (3), p.1-26, Article 134 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
Liouville field theory approach to 2-dimensional gravity possesses the duality (
b
↔
b
−1
). The matrix counterpart of minimal gravity ℳ(
q
,
p
) (
q < p
co-prime) is effectively described on
A
q
−1
Frobenius manifold, which may exhibit a similar duality
p
↔
q
, and allow a description on
A
p
−1
Frobenius manifold. We have positive results from the bulk one-point and the bulk-boundary two-point correlations on disk that the dual description of the Frobenius manifold works for the unitary series ℳ(
q
,
q
+ 1). However, for the Lee-Yang series ℳ(2, 2
q
+ 1) on disk the duality is checked only partially. The main difficulty lies in the absence of a canonical description of trace in the continuum limit. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP03(2018)134 |