Growth Response of Wheat and Maize to Different Nitrogen Supply Forms under the Enrichment of Atmospheric CO2 Concentrations

Elevated atmospheric CO2 concentrations (eCO2) has become the main feature and cause of global change that could affect crop growth in many aspects, including physiological processes and morphological development in plants and nutrient cycling and nutrient uptake from the soil. Studying the response...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agronomy (Basel) 2023-02, Vol.13 (2), p.485
Hauptverfasser: Dong, Libing, Li, Yingchun, Li, Ping, Liu, Ying, Ma, Fen, Hao, Xingyu, Guo, Liping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Elevated atmospheric CO2 concentrations (eCO2) has become the main feature and cause of global change that could affect crop growth in many aspects, including physiological processes and morphological development in plants and nutrient cycling and nutrient uptake from the soil. Studying the responses of crop growth to different nitrogen (N) supply forms under elevated atmospheric CO2 concentrations can guide nutrient management strategies for agricultural production under future climate change scenarios. Few studies addressed the effect of eCO2 on N uptake and morphological development for plants. This study was conducted in the CO2-controlled light incubators based on the sand-pot incubation using wheat and maize as experimental plants. Six treatments were set with two different environmental CO2 concentrations (aCO2, 390 µmol mol−1; eCO2, 690 µmol mol−1) and three different N supply forms, including ammonium−N, nitrate−N and ammonium-nitrate with 1:1 ratio. The following results were obtained: (i) Wheat and maize seedlings, as nitrate-preferring crops, grew better under mixed N forms than under single N forms. For the single N supply treatment, seedlings with nitrate−N supply showed better growth than with ammonium. (ii) For wheat plants, seedlings with a single ammonium−N supply showed slender height and fewer tillers; seedlings with a single nitrate−N supply were characterized by slightly shorter plant height, more tillers, and higher aboveground biomass. (iii) Compared to the aCO2 group, wheat seedlings with the ammonium−N supply showed an increased maximum root length and a decreased carbon concentration in root exudates; wheat seedlings with a single nitrate−N supply under eCO2 showed a significant increase in biomass and a decreased carbon concentration in root exudates; wheat seedlings with a mixed N supply under eCO2 explored a significant increase in carbon concentration in root exudate and a relatively lower N concentration. (iv) For maize plants, seedlings with either single ammonium−N or nitrate−N supply did not show significant differences in most growing indices. Maize seedlings with a mixed N supply exhibited an increase in aboveground biomass and N concentration in root exudates compared to those with a single N supply. (v) Compared with the aCO2 group, maize seedlings with mixed N supply under eCO2 conditions exhibited significant increases in plant height, aboveground biomass, and N concentration in root exudates. Single ammonium−N supp
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy13020485