Interferograms plotted with reference change value (RCV) may facilitate the management of hemolyzed samples

The European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Working Group for Preanalytical Phase (WG-PRE) have recommended an algorithm based on the reference change value (RCV) to evaluate hemolysis. We utilized this algorithm to analyze hemolysis-sensitive parameters. Two tubes o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical biochemistry 2022-01, Vol.41 (1), p.53-61
Hauptverfasser: Uçar, Kamil Taha, Çat, Abdulkadir, Gümüş, Alper, Nurlu, Nilhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Working Group for Preanalytical Phase (WG-PRE) have recommended an algorithm based on the reference change value (RCV) to evaluate hemolysis. We utilized this algorithm to analyze hemolysis-sensitive parameters. Two tubes of blood were collected from each of the 10 participants, one of which was subjected to mechanical trauma while the other was centrifuged directly. Subsequently, the samples were diluted with the participant's hemolyzed sample to obtain the desired hemoglobin concentrations (0, 1, 2, 4, 6, 8, and 10 g/L). ALT, AST, K, LDH, T. Bil tests were performed using Beckman Coulter AU680 analyzer. The analytical and clinical cut-offs were based on the biological variation for the allowable imprecision and RCV. The algorithms could report the values directly below the analytical cut-off or those between the analytical and clinical cut-offs with comments. If the change was above the clinical cut-off, the test was rejected. The linear regression was used for interferograms, and the hemoglobin concentrations corresponding to cut-offs were calculated via the interferograms. The RCV was calculated as 29.6% for ALT. Therefore, ALT should be rejected in samples containing >5.9 g/L hemoglobin. The RCVs for AST, K, LDH, and T. Bil were calculated as 27.9%, 12.1%, 19.2%, and 61.2%, while the samples' hemoglobin concentrations for test rejection were 0.8, 1.6, 0.5, and 2.2 g/L, respectively. Algorithms prepared with RCV could provide evidence-based results and objectively manage hemolyzed samples.
ISSN:1452-8258
1452-8266
DOI:10.5937/jomb0-31250