Water-efficient genotypes along with conservation measures significantly reduce the green and blue water footprints in sugarcane (Saccharum spp.)
Sugarcane crop is irrigated using surface, overhead, and drip irrigation methods. Increased water use in sugarcane is a major concern around the world, implying the need for water accounting, developing water-efficient hybrids and water-saving agro-techniques for long-term conservation and use of wa...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2023-08, Vol.13 (1), p.13229-13229, Article 13229 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sugarcane crop is irrigated using surface, overhead, and drip irrigation methods. Increased water use in sugarcane is a major concern around the world, implying the need for water accounting, developing water-efficient hybrids and water-saving agro-techniques for long-term conservation and use of water. “Water Footprint (WF)” is a measure of both direct and indirect water usage accountable for any product and/or process. In praxis, ‘Green Water Footprint’ (GWF) and ‘Blue Water Footprint’ (BWF) are extremely crucial for the restoration of essential ecosystem services (ES), such as sugarcane production. The WF metric was used as a priority tool in our study to evaluate water-efficient sugarcane hybrids, germplasm clones, deficit irrigation scheduling, crop geometry, and water conservation measures. Precise and accurate WF quantification would supplement the decision-making processes for managing available water resources in sugarcane agriculture. In split plot experimental design two research investigations on water management in sugarcane were undertaken at the ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, India. The major objective of the research trails was to find out suitable sugarcane hybrids and agronomic management practices to minimise water usage in sugarcane cultivation in water stressed and drought prone areas of tropical India. Our investigation comprised two phases; the first one being assessment of the impact of deficit irrigation scheduling, planting techniques and water conservation measures in sugarcane production, while the second phase dealt with genotypic evaluation under variable irrigation scheduling. Results showed that BWF reduced significantly in the first ratoon crop due to deficit irrigation scheduling coupled with planting of two budded setts and application of sugarcane trash at the rate of 5 t ha
−1
. Sugarcane hybrids viz., Co 85019, Co 10026, Co 12009, Co 13014, Co 14002, Co 14025, Co 15015, and Co 15018 were more water efficient, with a lower total WF. Among the germplasm clones, Fiji 55, ISH 111, ISH 107, Pathri, and Gungera exhibited lower GWF, BWF and total WF. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-40223-4 |