Gamma oscillations in somatosensory cortex recruit prefrontal and descending serotonergic pathways in aversion and nociception

In humans, gamma-band oscillations in the primary somatosensory cortex (S1) correlate with subjective pain perception. However, functional contributions to pain and the nature of underlying circuits are unclear. Here we report that gamma oscillations, but not other rhythms, are specifically strength...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-02, Vol.10 (1), p.983-983, Article 983
Hauptverfasser: Tan, Linette Liqi, Oswald, Manfred Josef, Heinl, Céline, Retana Romero, Oscar Andrés, Kaushalya, Sanjeev Kumar, Monyer, Hannah, Kuner, Rohini
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In humans, gamma-band oscillations in the primary somatosensory cortex (S1) correlate with subjective pain perception. However, functional contributions to pain and the nature of underlying circuits are unclear. Here we report that gamma oscillations, but not other rhythms, are specifically strengthened independently of any motor component in the S1 cortex of mice during nociception. Moreover, mice with inflammatory pain show elevated resting gamma and alpha activity and increased gamma power in response to sub-threshold stimuli, in association with behavioral nociceptive hypersensitivity. Inducing gamma oscillations via optogenetic activation of parvalbumin-expressing inhibitory interneurons in the S1 cortex enhances nociceptive sensitivity and induces aversive avoidance behavior. Activity mapping identified a network of prefrontal cortical and subcortical centers whilst morphological tracing and pharmacological studies demonstrate the requirement of descending serotonergic facilitatory pathways in these pain-related behaviors. This study thus describes a mechanistic framework for modulation of pain by specific activity patterns in the S1 cortex. Gamma oscillations in somatosensory areas in humans correlate with pain perception and pain stimulus intensity, but could also reflect cognitive processes such as attention. Here the authors provide evidence in mice that these oscillations causally contribute to pain perception.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-08873-z