Advantages of eutectic alloys for creating catalysts in the realm of nanotechnology-enabled metallurgy

The nascent field of nanotechnology-enabled metallurgy has great potential. However, the role of eutectic alloys and the nature of alloy solidification in this field are still largely unknown. To demonstrate one of the promises of liquid metals in the field, we explore a model system of catalyticall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-10, Vol.10 (1), p.4645-14, Article 4645
Hauptverfasser: Tang, Jianbo, Daiyan, Rahman, Ghasemian, Mohammad B., Idrus-Saidi, Shuhada A., Zavabeti, Ali, Daeneke, Torben, Yang, Jiong, Koshy, Pramod, Cheong, Soshan, Tilley, Richard D., Kaner, Richard B., Amal, Rose, Kalantar-Zadeh, Kourosh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nascent field of nanotechnology-enabled metallurgy has great potential. However, the role of eutectic alloys and the nature of alloy solidification in this field are still largely unknown. To demonstrate one of the promises of liquid metals in the field, we explore a model system of catalytically active Bi-Sn nano-alloys produced using a liquid-phase ultrasonication technique and investigate their phase separation, surface oxidation, and nucleation. The Bi-Sn ratio determines the grain boundary properties and the emergence of dislocations within the nano-alloys. The eutectic system gives rise to the smallest grain dimensions among all Bi-Sn ratios along with more pronounced dislocation formation within the nano-alloys. Using electrochemical CO 2 reduction and photocatalysis, we demonstrate that the structural peculiarity of the eutectic nano-alloys offers the highest catalytic activity in comparison with their non-eutectic counterparts. The fundamentals of nano-alloy formation revealed here may establish the groundwork for creating bimetallic and multimetallic nano-alloys. The combination of metallurgy concepts and nanotechnology with liquid metal processing has been largely unexplored. Here the authors use liquid-phase ultrasonication to produce a model system of catalytically active nano-alloys, demonstrating electrocatalysis and photocatalysis.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-12615-6