Novel C15 Triene Triazole, D-A Derivatives Anti-HepG2, and as HDAC2 Inhibitors: A Synergy Study
A series of novel C15 urushiol derivatives were designed by introducing a pechmann structure and F-, Cl-, and Br-nitro substituents with different electronic properties into its alkyl side chain, as well as a triazolyl functional group in its aromatic oxide. Their chemical structures were determined...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2018-10, Vol.19 (10), p.3184 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A series of novel C15 urushiol derivatives were designed by introducing a pechmann structure and F-, Cl-, and Br-nitro substituents with different electronic properties into its alkyl side chain, as well as a triazolyl functional group in its aromatic oxide. Their chemical structures were determined based on the analysis of the NMR (nuclear magnetic resonance) spectroscopic and mass spectrometric data. The results showed that compound
exhibited a strong inhibition of the HepG2 cell proliferation (half maximal inhibitory concentration (IC50): 2.833 μM to human hepatocellular carcinoma (HepG2), and 80.905 μM to human normal hepatocytes (LO2)). Furthermore, it had an excellent synergistic effect with levopimaric acid. The nitrogen atom of the triazole ring formed a hydrogen-bonding interaction with Gly103, Gly154, and Tyr308, which made compound
bind to histone deacetylase (HDAC)2 more tightly. One triazole ring and His33 formed a π⁻π stacking effect; the other, whose branches were deep into the pocket, further enhanced the interaction with HDAC2. Meanwhile, compound
involved a hydrophobic interaction with the residues Phe210 and Leu276. The hydrophobic interaction and π⁻π stacking provided powerful van der Waals forces for the compounds. |
---|---|
ISSN: | 1422-0067 1422-0067 |
DOI: | 10.3390/ijms19103184 |