On complete reducibility in characteristic $p

Let $G$ be a reductive group over a field $k$ which is algebraically closed of characteristic $p \neq 0$. We prove a structure theorem for a class of subgroup schemes of $G$, for $p$ bounded below by the Coxeter number of $G$. As applications, we derive semi-simplicity results, generalizing earlier...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Épijournal de géométrie algébrique 2017-09, Vol.1
Hauptverfasser: Balaji, V., Deligne, P., Parameswaran, A. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $G$ be a reductive group over a field $k$ which is algebraically closed of characteristic $p \neq 0$. We prove a structure theorem for a class of subgroup schemes of $G$, for $p$ bounded below by the Coxeter number of $G$. As applications, we derive semi-simplicity results, generalizing earlier results of Serre proven in 1998, and also obtain an analogue of Luna's \'etale slice theorem for suitable bounds on $p$. Comment: Appendix is by Zhiwei Yun
ISSN:2491-6765
2491-6765
DOI:10.46298/epiga.2017.volume1.2201