Full-Spectrum Targeted Mutagenesis in Plant and Animal Cells

Directed evolution is a powerful approach for protein engineering and functional studies. However, directed evolution outputs from bacterial and yeast systems do not always translate to higher organisms. In situ directed evolution in plant and animal cells has previously been limited by an inability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-01, Vol.22 (2), p.857
Hauptverfasser: Iaffaldano, Brian, Reiser, Jakob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Directed evolution is a powerful approach for protein engineering and functional studies. However, directed evolution outputs from bacterial and yeast systems do not always translate to higher organisms. In situ directed evolution in plant and animal cells has previously been limited by an inability to introduce targeted DNA sequence diversity. New hypermutation tools have emerged that can generate targeted mutations in plant and animal cells, by recruiting mutagenic proteins to defined DNA loci. Progress in this field, such as the development of CRISPR-derived hypermutators, now allows for all DNA nucleotides within user-defined regions to be altered through the recruitment of error-prone DNA polymerases or highly active DNA deaminases. The further engineering of these mutagenesis systems will potentially allow for all transition and transversion substitutions to be generated within user-defined genomic windows. Such targeted full-spectrum mutagenesis tools would provide a powerful platform for evolving antibodies, enzymes, structural proteins and RNAs with specific desired properties in relevant cellular contexts. These tools are expected to benefit many aspects of biological research and, ultimately, clinical applications.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms22020857