New machine learning-based automatic high-throughput video tracking system for assessing water toxicity using Daphnia Magna locomotory responses
Daphnia magna is an important organism in ecotoxicity studies because it is sensitive to toxic substances and easy to culture in laboratory conditions. Its locomotory responses as a biomarker are highlighted in many studies. Over the last several years, multiple high-throughput video tracking system...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2023-03, Vol.13 (1), p.3530-3530, Article 3530 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Daphnia magna
is an important organism in ecotoxicity studies because it is sensitive to toxic substances and easy to culture in laboratory conditions. Its locomotory responses as a biomarker are highlighted in many studies. Over the last several years, multiple high-throughput video tracking systems have been developed to measure the locomotory responses of
Daphnia magna
. These high-throughput systems, used for high-speed analysis of multiple organisms, are essential for efficiently testing ecotoxicity. However, existing systems are lacking in speed and accuracy. Specifically, speed is affected in the biomarker detection stage. This study aimed to develop a faster and better high-throughput video tracking system using machine learning methods. The video tracking system consisted of a constant temperature module, natural pseudo-light, multi-flow cell, and an imaging camera for recording videos. To measure
Daphnia magna
movements, we developed a tracking algorithm for automatic background subtraction using k-means clustering, Daphnia classification using machine learning methods (random forest and support vector machine), and tracking each
Daphnia magna
location using the simple online real-time tracking algorithm. The proposed tracking system with random forest performed the best in terms of identification (ID) precision, ID recall, ID F1 measure, and ID switches, with scores of 79.64%, 80.63%, 78.73%, and 16, respectively. Moreover, it was faster than existing tracking systems such as Lolitrack and Ctrax. We conducted an experiment to observe the impact of toxicants on behavioral responses. Toxicity was measured manually in the laboratory and automatically using the high-throughput video tracking system. The median effective concentration of Potassium dichromate measured in the laboratory and using the device was 1.519 and 1.414, respectively. Both measurements conformed to the guideline provided by the Environmental Protection Agency of the United States; therefore, our method can be used for water quality monitoring. Finally, we observed
Daphnia magna
behavioral responses in different concentrations after 0, 12, 18, and 24 h and found that there was a difference in movement according to the concentration at all hours. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-27554-y |