The new class $L_{z,p,E}$ of $s-$ type operators
The purpose of this study is to introduce the class of s-type $Z\left(u,v;l_{p}\left( E\right) \right) $ operators, which we denote by $%L_{z,p,E}\left(X,Y\right) $, we prove that this class is an operator ideal and quasi-Banach operator ideal by a quasi-norm defined on this class. Then we define cl...
Gespeichert in:
Veröffentlicht in: | AIMS mathematics 2019-07, Vol.4 (3), p.779-791 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this study is to introduce the class of s-type $Z\left(u,v;l_{p}\left( E\right) \right) $ operators, which we denote by $%L_{z,p,E}\left(X,Y\right) $, we prove that this class is an operator ideal and quasi-Banach operator ideal by a quasi-norm defined on this class. Then we define classes using other examples of $ s$-number sequences. We conclude by investigating which of these classes are injective, surjective or symmetric. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2019.3.779 |