Identifying Potential Planting Sites for Three Non-Native Plants to Be Used for Soil Rehabilitation in the Tula Watershed

The Tula watershed in Mexico, located in a semiarid and sub-humid climate zone, is experiencing intensive population growth, the expansion of mining concessions for construction materials, and agricultural and urban development, resulting in the degradation of soils and vegetation and a greater dema...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forests 2022-02, Vol.13 (2), p.270
Hauptverfasser: Buendía-Espinoza, Julio César, Martínez-Ochoa, Elisa del Carmen, Díaz-Aguilar, Irma, Cahuich-Damián, Jesús Eduardo, Zamora-Elizalde, Mayra Clementina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Tula watershed in Mexico, located in a semiarid and sub-humid climate zone, is experiencing intensive population growth, the expansion of mining concessions for construction materials, and agricultural and urban development, resulting in the degradation of soils and vegetation and a greater demand on natural resources. The aims of this study were to evaluate the survival rates and identify potential habitats within the Tula watershed for planting three non-native forage species (Atriplex canescens, Cynodon dactylon, and Leucaena collinsii) using the Kaplan-Meier estimator and the MaxEnt model with the purpose of rehabilitating degraded soils via agroforestry systems. There were 19 edaphoclimatic variables used and the occurrences of three species, obtained from the GBIF, MEXU, and SNIB databases. The models generated with MaxEnt were very accurate (area under the curve [AUC] ≥ 0.7). The species Atriplex canescens and Cynodon dactylon showed areas of potential planting sites (>0.4) and high survival rates (80% and 92%, respectively). The species Leucaena collinsii presented areas with lower potential planting (
ISSN:1999-4907
1999-4907
DOI:10.3390/f13020270