Numerical Simulation of the Performance and Emission of a Diesel Engine with Diesel-biodiesel Mixture
IntroductionIncreasing industrialization, growing energy demand, limited reserves of fossil fuels, and increasing environmental pollution have jointly necessitated for exploration of a substitute for conventional liquid fuels. Vegetable oils can be used as alternatives to petroleum fuels for engine...
Gespeichert in:
Veröffentlicht in: | Māshīnʹhā-yi kishāvarzī 2022-12, Vol.12 (4), p.559-574 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | IntroductionIncreasing industrialization, growing energy demand, limited reserves of fossil fuels, and increasing environmental pollution have jointly necessitated for exploration of a substitute for conventional liquid fuels. Vegetable oils can be used as alternatives to petroleum fuels for engine operation. These oils are mixtures of free-fatty acid molecules to contain carbon, hydrogen, and oxygen atoms. The ability to simulate the process of converting chemical energy to heat, energy users of computational fluid dynamics software in the design, analysis, and optimization of high-tech tools. Also, simulation saves time and reduces costs, workforce, and the space required.Materials and MethodsIn this research, a one-dimensional computational fluid dynamics solution with GT-Power software was used to simulate a four-cylinder, four-stroke, direct injection diesel engine to study the performance and exhaust emissions characteristics with different speeds and blends at full load. The engine speeds were chosen to be 1100 to 1400 rpm at an interval of 100 rpm. Also, fuel blends such as diesel (as a base), B5, and B10 biodiesel were selected for engine testing. To model a engine, we should have the dimensions of the engine, input air collection, output gases collection, the amount of sprinkled fuel, valves properties, combustion, and some of the estimates corresponding to the cylinder’s thermodynamic parameters when opening the output and input gate and to exchange the heat inside the cylinder as the input data. The model mainly consisted of an air cleaner, intake valve, exhaust valve, intake and exhaust port, injection nozzle, engine cylinder, and engine. Engine cylinder’s intake and exhaust ports are modeled geometrically with pipes. Before this investigation was carried out, a validation model for evaluation was done by experimental and simulation data. The validation results showed that the software model error is acceptable.Results and DiscussionThe engine performance and emissions were evaluated in terms of engine torque, specific fuel consumption, NOx, and CO emission at different engine speeds and fuels at full load. The results showed that with increasing the engine speeds, torque increased. On the other hand, the maximum engine torque for the diesel engine is slightly lower than the biodiesel-blended that increased by 4.4% because of the higher density and viscosity of biodiesel than diesel. Specific Fuel Consumption (SFC) is a measure of the fuel eff |
---|---|
ISSN: | 2228-6829 2423-3943 |
DOI: | 10.22067/jam.2021.69149.1023 |