A convergent Deep Learning algorithm for approximation of polynomials
We start from the contractive functional equation proposed in [4], where it was shown that the polynomial solution of functional equation can be used to initialize a Neural Network structure, with a controlled accuracy. We propose a novel algorithm, where the functional equation is solved with a con...
Gespeichert in:
Veröffentlicht in: | Comptes rendus. Mathématique 2023-09, Vol.361 (G6), p.1029-1040 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We start from the contractive functional equation proposed in [4], where it was shown that the polynomial solution of functional equation can be used to initialize a Neural Network structure, with a controlled accuracy. We propose a novel algorithm, where the functional equation is solved with a converging iterative algorithm which can be realized as a Machine Learning training method iteratively with respect to the number of layers. The proof of convergence is performed with respect to the $L^\infty $ norm. Numerical tests illustrate the theory and show that stochastic gradient descent methods can be used with good accuracy for this problem. |
---|---|
ISSN: | 1778-3569 1778-3569 |
DOI: | 10.5802/crmath.462 |