Mining Double-line Spectroscopic Candidates in the LAMOST Medium-resolution Spectroscopic Survey Using a Human–AI Hybrid Method
We utilize a hybrid approach that integrates the traditional cross-correlation function (CCF) and machine learning to detect spectroscopic multiple star systems, specifically focusing on double-line spectroscopic binaries (SB2s). Based on the ninth data release (DR9) of the Large Sky Area Multi-Obje...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal. Supplement series 2025-01, Vol.276 (1), p.11 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We utilize a hybrid approach that integrates the traditional cross-correlation function (CCF) and machine learning to detect spectroscopic multiple star systems, specifically focusing on double-line spectroscopic binaries (SB2s). Based on the ninth data release (DR9) of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), which includes a medium-resolution survey (MRS) containing 29,920,588 spectra, we identify 27,164 double-line and 3124 triple-line spectra, corresponding to 7096 SB2 candidates and 1903 triple-line spectroscopic binary (SB3) candidates, respectively, representing about 1% of the selected data set from LAMOST-MRS DR9. Notably, 70.1% of the SB2 candidates and 89.6% of the SB3 candidates are newly identified. Compared to using only the traditional CCF technique, our method significantly improves the efficiency of detecting SB2s, saving time on visual inspections by a factor of 4. |
---|---|
ISSN: | 0067-0049 1538-4365 |
DOI: | 10.3847/1538-4365/ad9010 |