Mining Double-line Spectroscopic Candidates in the LAMOST Medium-resolution Spectroscopic Survey Using a Human–AI Hybrid Method

We utilize a hybrid approach that integrates the traditional cross-correlation function (CCF) and machine learning to detect spectroscopic multiple star systems, specifically focusing on double-line spectroscopic binaries (SB2s). Based on the ninth data release (DR9) of the Large Sky Area Multi-Obje...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal. Supplement series 2025-01, Vol.276 (1), p.11
Hauptverfasser: Li, Shan-shan, Li, Chun-qian, Li, Chang-hua, Fan, Dong-wei, Xu, Yun-fei, Mi, Lin-ying, Cui, Chen-zhou, Shi, Jian-rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We utilize a hybrid approach that integrates the traditional cross-correlation function (CCF) and machine learning to detect spectroscopic multiple star systems, specifically focusing on double-line spectroscopic binaries (SB2s). Based on the ninth data release (DR9) of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), which includes a medium-resolution survey (MRS) containing 29,920,588 spectra, we identify 27,164 double-line and 3124 triple-line spectra, corresponding to 7096 SB2 candidates and 1903 triple-line spectroscopic binary (SB3) candidates, respectively, representing about 1% of the selected data set from LAMOST-MRS DR9. Notably, 70.1% of the SB2 candidates and 89.6% of the SB3 candidates are newly identified. Compared to using only the traditional CCF technique, our method significantly improves the efficiency of detecting SB2s, saving time on visual inspections by a factor of 4.
ISSN:0067-0049
1538-4365
DOI:10.3847/1538-4365/ad9010