Particle Size-Dependent Monthly Variation of Pollution Load, Ecological Risk, and Sources of Heavy Metals in Road Dust in Beijing, China

Road dust carries various contaminants and causes urban non-point source pollution in waterbodies through runoff. Road dust samples were collected in each month in two years and then sieved into five particle size fractions. The concentrations of ten heavy metals (As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxics (Basel) 2025-01, Vol.13 (1), p.40
Hauptverfasser: Men, Cong, Li, Donghui, Jing, Yunqi, Xiong, Ke, Liu, Jiayao, Cheng, Shikun, Li, Zifu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Road dust carries various contaminants and causes urban non-point source pollution in waterbodies through runoff. Road dust samples were collected in each month in two years and then sieved into five particle size fractions. The concentrations of ten heavy metals (As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn, Fe) in each fraction were measured. The particle size fraction load index, coefficient of divergence, and Nemerow integrated risk index were used to analyze the temporal variation of pollution load and ecological risk in different particle size fractions. The advanced three-way model and wavelet analysis were used in quantitative identification and time-series analysis of sources. Results showed that both the pollution load and ecological risk of most heavy metals showed a decreasing trend from the finest fraction (P1) to the coarsest fraction (P5). The frequency of heavy metals in P1 posing extreme risk was about two times that of P5. Main types of heavy metal sources were similar among different fractions, whereas the impact intensity of these sources varied among different fractions. Traffic exhaust tended to accumulate in finer particles, and its contribution to Cu in P5 was only 35-55% of that in other fractions. Construction contributed more to coarser particles, and its contribution to Pb was increased from 45.34% in P1 to 65.35% in P5. Wavelet analysis indicated that traffic exhaust showed periodicities of 5-8 and 10-13 months. Fuel combustion displayed the strongest periodicity of 12-15 months, peaking in winter.
ISSN:2305-6304
2305-6304
DOI:10.3390/toxics13010040