Identifikasi Suara Tangisan Bayi menggunakan Metode LPC dan Euclidean Distance
ABSTRAKKebanyakan orang tua masih jarang memiliki kemampuan mengartikan tangisan bayi. Bagi beberapa orang tua hal tersebut menjadi kendala ketika mengenali kebutuhan dari tangisan bayi. Oleh karena itu, pada penelitian ini telah diirancang sistem mengidentifikasi suara tangisan bayi dengan metode e...
Gespeichert in:
Veröffentlicht in: | Elkomika 2018-04, Vol.6 (1), p.153 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng ; ind |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRAKKebanyakan orang tua masih jarang memiliki kemampuan mengartikan tangisan bayi. Bagi beberapa orang tua hal tersebut menjadi kendala ketika mengenali kebutuhan dari tangisan bayi. Oleh karena itu, pada penelitian ini telah diirancang sistem mengidentifikasi suara tangisan bayi dengan metode ektstraksi sinyal yaitu metode LPC (Linear Predictive Coding) dan pencocokan pola menggunakan algoritma Euclidean Distance. Data latih tangisan bayi menggunakan database suara Baby language-DBL, sementara data uji suara tangisan bayi diperoleh dari hasil observasi di poliklinik anak suatu rumah sakit. Proses diawali dengan mengektraksi file suara tangisan bayi dan disimpan ke dalam database sebagai data latih. Suara data uji diekstraksi kemudian dicocokkan dengan data latih menggunakan Euclidean Distance. Aplikasi dapat mengidentifikasi suara tangisan bayi dengan hasil pencocokan sebesar 76%.Kata kunci: Tangisan Bayi, Linear Predictive Coding, Euclidean Distance, Dunstan Baby LanguageABSTRACTMost parents still rarely have the ability to interpret the infant cries. Some parents become an obstacle when recognizing the needs of crying babies. Therefore, this research has designed the system to identify the sound of crying baby with method of signal extraction that is LPC (Linear Predictive Coding) method and pattern matching using Euclidean Distance algorithm. Training dataset of infant cries using the Dunstan Baby language database-DBL, while testing dataset of infant cries were obtained from observations in the child polyclinic of a hospital. The process begins by extracting training dataset from the sound of infant cries files and stored in the database. The extraction feature of testing dataset is matched with the training data using the Euclidean Distance. The system can identify the sound of crying babies with matching results of 76%.Keywords: Infant Cries, Newborn Cries, Linear Predictive Coding, Euclidean Distance, Dunstan Baby Language |
---|---|
ISSN: | 2338-8323 2459-9638 |
DOI: | 10.26760/elkomika.v6i1.153 |