Cyberbullying Detection on Twitter Using Deep Learning-Based Attention Mechanisms and Continuous Bag of Words Feature Extraction

Since social media platforms are widely used and popular, they have given us more opportunities than we can even imagine. Despite all of the known benefits, some users may abuse these opportunities to humiliate, insult, bully, and harass other people. This issue explains why there is a need to reduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-08, Vol.11 (16), p.3567
Hauptverfasser: Fati, Suliman Mohamed, Muneer, Amgad, Alwadain, Ayed, Balogun, Abdullateef O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Since social media platforms are widely used and popular, they have given us more opportunities than we can even imagine. Despite all of the known benefits, some users may abuse these opportunities to humiliate, insult, bully, and harass other people. This issue explains why there is a need to reduce such negative activities and create a safe cyberspace for innocent people by detecting cyberbullying activity. This study provides a comparative analysis of deep learning methods used to test and evaluate their effectiveness regarding a well-known global Twitter dataset. To recognize abusive tweets and overcome existing challenges, attention-based deep learning methods are introduced. The word2vec with CBOW concatenated formed the weights included in the embedding layer and was used to extract the features. The feature vector was input into a convolution and pooling mechanism, reducing the feature dimensionality while learning the position-invariant of the offensive words. A SoftMax function predicts feature classification. Using benchmark experimental datasets and well-known evaluation measures, the convolutional neural network model with attention-based long- and short-term memory was found to outperform other DL methods. The proposed cyberbullying detection methods were evaluated using benchmark experimental datasets and well-known evaluation measures. Finally, the results demonstrated the superiority of the attention-based 1D convolutional long short-term memory (Conv1DLSTM) classifier over the other implemented methods.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11163567