Eye-Gaze Controlled Wheelchair Based on Deep Learning

In this paper, we design a technologically intelligent wheelchair with eye-movement control for patients with ALS in a natural environment. The system consists of an electric wheelchair, a vision system, a two-dimensional robotic arm, and a main control system. The smart wheelchair obtains the eye i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-07, Vol.23 (13), p.6239
Hauptverfasser: Xu, Jun, Huang, Zuning, Liu, Liangyuan, Li, Xinghua, Wei, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we design a technologically intelligent wheelchair with eye-movement control for patients with ALS in a natural environment. The system consists of an electric wheelchair, a vision system, a two-dimensional robotic arm, and a main control system. The smart wheelchair obtains the eye image of the controller through a monocular camera and uses deep learning and an attention mechanism to calculate the eye-movement direction. In addition, starting from the relationship between the trajectory of the joystick and the wheelchair speed, we establish a motion acceleration model of the smart wheelchair, which reduces the sudden acceleration of the smart wheelchair during rapid motion and improves the smoothness of the motion of the smart wheelchair. The lightweight eye-movement recognition model is transplanted into an embedded AI controller. The test results show that the accuracy of eye-movement direction recognition is 98.49%, the wheelchair movement speed is up to 1 m/s, and the movement trajectory is smooth, without sudden changes.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23136239