Integrative Analysis of Gene Expression and miRNAs Reveal Biological Pathways Associated with Bud Paradormancy and Endodormancy in Grapevine

Transition of grapevine buds from paradormancy to endodormancy is coordinated by changes in gene expression, phytohormones, transcription factors, and other molecular regulators, but the mechanisms involved in transcriptional and post-transcriptional regulation of dormancy stages are not well deline...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plants (Basel) 2021-03, Vol.10 (4), p.669
Hauptverfasser: Smita, Shuchi, Robben, Michael, Deuja, Anup, Accerbi, Monica, Green, Pamela J, Subramanian, Senthil, Fennell, Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transition of grapevine buds from paradormancy to endodormancy is coordinated by changes in gene expression, phytohormones, transcription factors, and other molecular regulators, but the mechanisms involved in transcriptional and post-transcriptional regulation of dormancy stages are not well delineated. To identify potential regulatory targets, an integrative analysis of differential gene expression profiles and their inverse relationships with miRNA abundance was performed in paradormant (long day (LD) 15 h) or endodormant (short day (SD), 13 h) buds. There were 400 up- and 936 downregulated differentially expressed genes in SD relative to LD budsGene set and gene ontology enrichment analysis indicated that hormone signaling and cell cycling genes were downregulated in SD relative to LD buds. miRNA abundance and inverse expression analyses of miRNA target genes indicated increased abundance of miRNAs that negatively regulate genes involved with cell cycle and meristem development in endodormant buds and miRNAs targeting starch metabolism related genes in paradormant buds. Analysis of interactions between abundant miRNAs and transcription factors identified a network with coinciding regulation of cell cycle and epigenetic regulation related genes in SD buds. This network provides evidence for cross regulation occurring between miRNA and transcription factors both upstream and downstream of .
ISSN:2223-7747
2223-7747
DOI:10.3390/plants10040669