The learning performance of the weak rescaled pure greedy algorithms

We investigate the regression problem in supervised learning by means of the weak rescaled pure greedy algorithm (WRPGA). We construct learning estimator by applying the WRPGA and deduce the tight upper bounds of the K -functional error estimate for the corresponding greedy learning algorithms in Hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inequalities and applications 2024-03, Vol.2024 (1), p.30-14, Article 30
Hauptverfasser: Guo, Qin, Liu, Xianghua, Ye, Peixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the regression problem in supervised learning by means of the weak rescaled pure greedy algorithm (WRPGA). We construct learning estimator by applying the WRPGA and deduce the tight upper bounds of the K -functional error estimate for the corresponding greedy learning algorithms in Hilbert spaces. Satisfactory learning rates are obtained under two prior assumptions on the regression function. The application of the WRPGA in supervised learning considerably reduces the computational cost while maintaining its powerful generalization capability when compared with other greedy learning algorithms.
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-024-03077-6