Compressed Sensing-Based Order Analysis for Blade Tip Timing Signals Measured at Varying Rotational Speed

Monitoring the vibrations of high-speed rotating blades is significant to the security of turbomachineries. Blade tip timing (BTT) is considered as a promising technique for detecting blade vibrations without contact online. However, extracting blade vibration characteristics accurately from undersa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock and vibration 2020, Vol.2020 (2020), p.1-12
Hauptverfasser: Shen, Guoji, Guan, Fengjiao, Hu, Haifeng, Yang, Yongmin, Chen, Suiyu, Yang, Faming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monitoring the vibrations of high-speed rotating blades is significant to the security of turbomachineries. Blade tip timing (BTT) is considered as a promising technique for detecting blade vibrations without contact online. However, extracting blade vibration characteristics accurately from undersampled BTT signals measured at varying rotational speed (VRS) has become a big challenge. The existing two methods for this issue are restricted within the order bandwidth limitation and require prior information and precise sensor installation angles, which is often unpractical. To overcome these difficulties, a compressed sensing-based order analysis (CSOA) method was proposed. Its feasibility comes from the sparsity of BTT vibration signals in the order domain. The mathematical model for the proposed method was built, and the optimizing principles for sensor number and sensor arrangement were given. Simulated and experimental results verified the feasibility and advantages of the proposed method that it could extract order spectrum accurately from BTT vibration signals measured at VRS without the drawbacks in the existing two methods.
ISSN:1070-9622
1875-9203
DOI:10.1155/2020/8328345