Long Noncoding RNA HOTAIR Controls Cell Cycle by Functioning as a Competing Endogenous RNA in Esophageal Squamous Cell Carcinoma

Abstract Recent studies have shown that long noncoding RNAs (lncRNAs) play pivotal roles in the initiation and progression of cancer, including esophageal squamous cell carcinoma (ESCC). The lncRNA HOX transcript antisense RNA (HOTAIR) was reported to be dysregulated and correlated with the progress...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Translational oncology 2016-12, Vol.9 (6), p.489-497
Hauptverfasser: Ren, Kewei, Li, Yahua, Lu, Huibin, Li, Zongming, Li, Zhen, Wu, Kai, Li, Zhiqin, Han, Xinwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Recent studies have shown that long noncoding RNAs (lncRNAs) play pivotal roles in the initiation and progression of cancer, including esophageal squamous cell carcinoma (ESCC). The lncRNA HOX transcript antisense RNA (HOTAIR) was reported to be dysregulated and correlated with the progression of ESCC. However, the biological role and the underlying mechanism of HOTAIR in the development of ESCC remain unclear. Herein, we found that HOTAIR was aberrantly upregulated in ESCC cells and that HOTAIR depletion inhibited proliferation and led to G1 cell cycle arrest in ESCC cells. Besides, we found that HOTAIR acted as an endogenous sponge to downregulate miR-1 expression by directly binding to miR-1. Furthermore, HOTAIR overturned the effect of miR-1 on the proliferation and cell cycle profile in ESCC cells, which involved the derepression of cyclin D1 (CCND1) expression, a target of miR-1. Taken together, our study elucidated a novel HOTAIR /miR-1/CCND1 regulatory axis in which HOTAIR acted as a competing endogenous RNA by sponging miR-1 and upregulated CCND1 expression, thereby facilitating the tumorigenesis of ESCC. Investigation of this lncRNA/miRNA/mRNA pathway may contribute to a better understanding of ESCC pathogenesis and facilitate the development of lncRNA-directed therapy against this disease.
ISSN:1936-5233
1944-7124
DOI:10.1016/j.tranon.2016.09.005