On a Five-Parameter Mittag-Leffler Function and the Corresponding Bivariate Fractional Operators
Several extensions of the classical Mittag-Leffler function, including multi-parameter and multivariate versions, have been used to define fractional integral and derivative operators. In this paper, we consider a function of one variable with five parameters, a special case of the Fox–Wright functi...
Gespeichert in:
Veröffentlicht in: | Fractal and fractional 2021-06, Vol.5 (2), p.45 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Several extensions of the classical Mittag-Leffler function, including multi-parameter and multivariate versions, have been used to define fractional integral and derivative operators. In this paper, we consider a function of one variable with five parameters, a special case of the Fox–Wright function. It turns out that the most natural way to define a fractional integral based on this function requires considering it as a function of two variables. This gives rise to a model of bivariate fractional calculus, which is useful in understanding fractional differential equations involving mixed partial derivatives. |
---|---|
ISSN: | 2504-3110 2504-3110 |
DOI: | 10.3390/fractalfract5020045 |