On a Five-Parameter Mittag-Leffler Function and the Corresponding Bivariate Fractional Operators

Several extensions of the classical Mittag-Leffler function, including multi-parameter and multivariate versions, have been used to define fractional integral and derivative operators. In this paper, we consider a function of one variable with five parameters, a special case of the Fox–Wright functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractal and fractional 2021-06, Vol.5 (2), p.45
Hauptverfasser: Özarslan, Mehmet Ali, Fernandez, Arran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several extensions of the classical Mittag-Leffler function, including multi-parameter and multivariate versions, have been used to define fractional integral and derivative operators. In this paper, we consider a function of one variable with five parameters, a special case of the Fox–Wright function. It turns out that the most natural way to define a fractional integral based on this function requires considering it as a function of two variables. This gives rise to a model of bivariate fractional calculus, which is useful in understanding fractional differential equations involving mixed partial derivatives.
ISSN:2504-3110
2504-3110
DOI:10.3390/fractalfract5020045