Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells
Long-term stability is crucial for the future application of perovskite solar cells, a promising low-cost photovoltaic technology that has rapidly advanced in the recent years. Here, we designed a nanostructured carbon layer to suppress the diffusion of ions/molecules within perovskite solar cells,...
Gespeichert in:
Veröffentlicht in: | Nature communications 2017-06, Vol.8 (1), p.15330-15330, Article 15330 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Long-term stability is crucial for the future application of perovskite solar cells, a promising low-cost photovoltaic technology that has rapidly advanced in the recent years. Here, we designed a nanostructured carbon layer to suppress the diffusion of ions/molecules within perovskite solar cells, an important degradation process in the device. Furthermore, this nanocarbon layer benefited the diffusion of electron charge carriers to enable a high-energy conversion efficiency. Finally, the efficiency on a perovskite solar cell with an aperture area of 1.02 cm
2
, after a thermal aging test at 85 °C for over 500 h, or light soaking for 1,000 h, was stable of over 15% during the entire test. The present diffusion engineering of ions/molecules and photo generated charges paves a way to realizing long-term stable and highly efficient perovskite solar cells.
Ion migration in perovskite solar cells are known to cause hysteresis and instability. Bi
et al
., report a charge extraction layer based on graphene, fullerenes and carbon quantum dots which suppresses ion diffusion and enhances charge carrier diffusion leading to efficient devices with improved stability. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms15330 |