Test of quantum atmosphere in the dimensionally reduced Schwarzschild black hole

It has been suggested by Giddings that the origin of Hawking radiation in black holes is a quantum atmosphere of near-horizon quantum region by investigating both the total emission rate and the stress tensor of Hawking radiation. Revisiting this issue in the exactly soluble model of a dimensionally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. B 2019-11, Vol.798, p.135020, Article 135020
Hauptverfasser: Eune, Myungseok, Kim, Wontae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been suggested by Giddings that the origin of Hawking radiation in black holes is a quantum atmosphere of near-horizon quantum region by investigating both the total emission rate and the stress tensor of Hawking radiation. Revisiting this issue in the exactly soluble model of a dimensionally reduced Schwarzschild black hole, we shall confirm that the dominant Hawking radiation in the Unruh vacuum indeed occurs at the quantum atmosphere, not just at the horizon by exactly calculating the out-temperature responsible for outgoing Hawking particle excitations. Consequently we show that the out-temperature vanishes at the horizon and has a peak at a scale whose radial extent is set by the horizon radius, and then decreases to the Hawking temperature at infinity. We also discuss bounds of location of the peak for the out-temperature in our model.
ISSN:0370-2693
1873-2445
DOI:10.1016/j.physletb.2019.135020