Matrix-Bound Zolzoledronate Enhances the Biofilm Colonization of Hydroxyapatite: Effects on Osteonecrosis
(1) Background: The aim of this study was to test whether matrix-bound zoledronate (zol) molecules enhanced the oral biofilm colonization of a mineralized matrix, rendering the alveolar bone more susceptible to medication-related osteonecrosis of the jaw (MRONJ) following invasive dental procedures....
Gespeichert in:
Veröffentlicht in: | Antibiotics (Basel) 2021-11, Vol.10 (11), p.1380 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | (1) Background: The aim of this study was to test whether matrix-bound zoledronate (zol) molecules enhanced the oral biofilm colonization of a mineralized matrix, rendering the alveolar bone more susceptible to medication-related osteonecrosis of the jaw (MRONJ) following invasive dental procedures. (2) Methods: We tested the effect of matrix-bound zol on the growth and attachment of Porphyromonas gingivalis (Pg), Fusobacterium nucleatum (Fn) and Actinomyces israelii (Ai), and whether the nitrogen-containing component of zol contributed to such effect. The role of oral bacteria in the induction of osteonecrosis was then tested using an extra-oral bone defect model. (3) Results: The attachment of biofilm to hydroxyapatite discs increased when the discs were pre-treated with zol. Bacterial proliferation was not affected. Matrix-bound zol was more potent than non-nitrogen-containing etidronate in enhancing the colonization. Stimulation was dampened by pre-treating the bacteria with histidine. The delivery of oral biofilm to a tibial defect caused osteonecrosis in zol-treated rats. (4) Conclusions: We conclude that matrix-bound zol enhances the oral biofilm colonization of hydroxyapatite. This enhancement depended on the presence of the nitrogen-containing group. The oral biofilm rendered the extra-oral bone susceptible to medication-related osteonecrosis, suggesting that it has an important role in the induction of MRONJ. |
---|---|
ISSN: | 2079-6382 2079-6382 |
DOI: | 10.3390/antibiotics10111380 |