Increased coherence predicts medical refractoriness in patients with temporal lobe epilepsy on monotherapy

Among patients with epilepsy, 30–40% experience recurrent seizures even after adequate antiseizure medications therapies, making them refractory. The early identification of refractory epilepsy is important to provide timely surgical treatment for these patients. In this study, we analyze interictal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-09, Vol.14 (1), p.20530-11, Article 20530
Hauptverfasser: Hwang, Sungeun, Shin, Youmin, Sunwoo, Jun-Sang, Son, Hyoshin, Lee, Seung-Bo, Chu, Kon, Jung, Ki-Young, Lee, Sang Kun, Kim, Young-Gon, Park, Kyung-Il
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Among patients with epilepsy, 30–40% experience recurrent seizures even after adequate antiseizure medications therapies, making them refractory. The early identification of refractory epilepsy is important to provide timely surgical treatment for these patients. In this study, we analyze interictal electroencephalography (EEG) data to predict drug refractoriness in patients with temporal lobe epilepsy (TLE) who were treated with monotherapy at the time of the first EEG acquisition. Various EEG features were extracted, including statistical measurements and interchannel coherence. Feature selection was performed to identify the optimal features, and classification was conducted using different classifiers. Functional connectivity and graph theory measurements were calculated to identify characteristics of refractory TLE. Among the 48 participants, 34 (70.8%) were responsive, while 14 (29.2%) were refractory over a mean follow-up duration of 38.5 months. Coherence feature within the gamma frequency band exhibited the most favorable performance. The light gradient boosting model, employing the mutual information filter-based feature selection method, demonstrated the highest performance (AUROC = 0.821). Compared to the responsive group, interchannel coherence displayed higher values in the refractory group. Interestingly, graph theory measurements using EEG coherence exhibited higher values in the refractory group than in the responsive group. Our study has demonstrated a promising method for the early identification of refractory TLE utilizing machine learning algorithms.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-71583-0