Fault Diagnosis Technology for Ship Electrical Power System
This paper proposes a fault diagnosis method for ship electrical power systems on the basis of an improved convolutional neural network (CNN) to support normal ship operation. First, according to the mathematical model of the ship electrical power system, the simulation model of the ship electrical...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2022-02, Vol.15 (4), p.1287 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a fault diagnosis method for ship electrical power systems on the basis of an improved convolutional neural network (CNN) to support normal ship operation. First, according to the mathematical model of the ship electrical power system, the simulation model of the ship electrical power system is built using the MATLAB/Simulink simulation software platform in order to understand the normal working state and fault state of the generator and load in the power system. Then, the model is simulated to generate the fault response curve, and the picture dataset of the network model is obtained. Second, a CNN fault diagnosis model is designed using TensorFlow, an open-source tool for deep learning. Finally, network model training is performed, and the optimal diagnosis results of the ship electrical power system are obtained to realize structural parameter optimization and diagnosis. The diagnosis results show that the established simulation model and improved CNN can provide support for fault diagnosis of the ship electrical power system, improve the operation stability and safety of the ship electrical power system, and ensure safety of the crew. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en15041287 |