Energy, Environmental, Economic, and Technological Analysis of Al-GnP Nanofluid- and Cryogenic LN2-Assisted Sustainable Machining of Ti-6Al-4V Alloy

The quest for advanced cooling/lubrication approaches for energy-efficient, eco-benign, and cost-effective sustainable machining processes is garnering attention in academia and industry. Electrical and embodied energy consumption plays an important role in reducing CO2 emissions. In the present stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2021-01, Vol.11 (1), p.88
Hauptverfasser: Khan, Aqib Mashood, Anwar, Saqib, Jamil, Muhammad, Nasr, Mustafa M., Gupta, Munish Kumar, Saleh, Mustafa, Ahmad, Shafiq, Mia, Mozammel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The quest for advanced cooling/lubrication approaches for energy-efficient, eco-benign, and cost-effective sustainable machining processes is garnering attention in academia and industry. Electrical and embodied energy consumption plays an important role in reducing CO2 emissions. In the present study, new empirical models are proposed to assess sustainable indicators. The embodied energy, environmental burden, and cost of coolant/lubricant have been added in the proposed models. Initially, optimal levels of minimum quantity lubrication (MQL) oil flow rate, liquid LN2 flow rate, air pressure, and nanoparticle concentration were found. Based on optimal technological parameters, experiments were performed under the same cutting conditions (machining parameters) for MQL and cryogenic LN2-assisted external turning of Ti6-Al-4V titanium alloy. The electric power and energy consumption, production time/cost, and CO2 emissions were assessed for a unit cutting-tool life. Later, specific responses were measured and compared between both cooling and lubrication approaches. Results showed that hybrid Al-GnP nanofluid consumed 80.6% less specific cumulative energy and emitted 88.7% less total CO2 emissions. However, cryogenic LN2 extended tool life by nearly 70% and incurred 4.12% less specific costs with 11.1% better surface quality. In summary, after Energy–Economy–Ecology–Engineering technology (4E)-based analysis, cryogenic LN2 is sustainable economically but not environmentally and there is a need to improve the sustainable production of LN2 at an industrial scale to achieve environmental sustainability. The present study provides useful information to establish clean machining processes.
ISSN:2075-4701
2075-4701
DOI:10.3390/met11010088