SIM-D: An Agent-Based Simulator for Modeling Contagion in Population

The spread of infectious diseases such as COVID-19, flu influenza, malaria, dengue, mumps, and rubella in a population is a big threat to public health. The infectious diseases spread from one person to another person through close contact. Without proper planning, an infectious disease can become a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-11, Vol.10 (21), p.7745
Hauptverfasser: Waleed, Muhammad, Um, Tai-Won, Kamal, Tariq, Khan, Aftab, Zahid, Zaka Ullah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The spread of infectious diseases such as COVID-19, flu influenza, malaria, dengue, mumps, and rubella in a population is a big threat to public health. The infectious diseases spread from one person to another person through close contact. Without proper planning, an infectious disease can become an epidemic and can result in large human and financial losses. To better respond to the spread of infectious disease and take measures for its control, the public health authorities need models and simulations to study the spread of such diseases. In this paper, an agent-based simulation engine is presented that models the spread of infectious diseases in the population. The simulation takes as an input the human-to-human interactions, population dynamics, disease transmissibility and disease states and shows the spread of disease over time. The simulation engine supports non-pharmaceutical interventions and shows its impact on the disease spread across locations. A unique feature of this tool is that it is generic; therefore, it can simulate a wide variety of infectious disease models (SIR), susceptible-infectious-susceptible (SIS) and susceptible-infectious (SI). The proposed simulation engine will help the policy-makers and public health authorities study the behavior of disease spreading; thus, allowing for better planning.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10217745