Equivalent Model of Photovoltaic Power Station Considering Different Generation Units’ Fault Current Contributions

The fault current calculation model of photovoltaic (PV) power stations is usually treated as a capacity weighted equivalent model of a single PV generation unit (PVGU). However, in the same PV power station, different PVGUs have various fault current characteristics. As a result, there are signific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2022-01, Vol.15 (1), p.229
Hauptverfasser: Liu, Sumei, Zhang, Hao, Zhang, Peng, Li, Zhongqing, Wang, Zepeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fault current calculation model of photovoltaic (PV) power stations is usually treated as a capacity weighted equivalent model of a single PV generation unit (PVGU). However, in the same PV power station, different PVGUs have various fault current characteristics. As a result, there are significant differences in fault current characteristics between a PVGU and a PV power station. It means that the existing capacity weighted equivalent model cannot be used for accurately describing the fault current contributions from a practical PV power station. In this paper, the fault behaviors of the PVGUs located at different access points of a PV power station are firstly analyzed. The difference in PVGUs’ fault current contributions is identified and reflected with the activation states of current limiters that are employed for PV inverters. The activation states are represented by a theoretical expression so as to distinguish the PVGUs’ fault contributions. Further, based on the proposed theoretical expression, a novel algorithm is developed for sorting all PVGUs included in a PV power station. The multi-machine calculation model is deduced in order to exactly express the fault current contribution from a PV station. Finally, some simulation tests are conducted. The tested results verify the effectiveness of the proposed calculation model. It can provide support for calculating the protection setting of power grid connected with large-scale PV stations.
ISSN:1996-1073
1996-1073
DOI:10.3390/en15010229