Existence of a Period-Two Solution in Linearizable Difference Equations
Consider the difference equation xn+1=f(xn,…,xn−k),n=0,1,…, where k∈{1,2,…} and the initial conditions are real numbers. We investigate the existence and nonexistence of the minimal period-two solution of this equation when it can be rewritten as the nonautonomous linear equation xn+l=∑i=1−lkgixn−i,...
Gespeichert in:
Veröffentlicht in: | Discrete Dynamics in Nature and Society 2013-01, Vol.2013 (2013), p.19-27-103 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider the difference equation xn+1=f(xn,…,xn−k),n=0,1,…, where k∈{1,2,…} and the initial conditions are real numbers. We investigate the existence and nonexistence of the minimal period-two solution of this equation when it can be rewritten as the nonautonomous linear equation xn+l=∑i=1−lkgixn−i, n=0,1,…, where l,k∈{1,2,…} and the functions gi:ℝk+l→ℝ. We give some necessary and sufficient conditions for the equation to have a minimal period-two solution when l=1. |
---|---|
ISSN: | 1026-0226 1607-887X |
DOI: | 10.1155/2013/421545 |