Development of a new magnetocaloric material used in a magnetic refrigeration device

Testing directly a magnetocaloric material in a magnetic refrigeration (MR) system is the best way to judge of its applicative potentialities. In this spirit, an oxide expected to show promising magnetocaloric properties around room temperature (Pr0.65Sr0.35MnO3) was produced in large scale and shap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ Web of conferences 2012-01, Vol.29, p.21
Hauptverfasser: Cheikhrouhou, A., Guillou, F., Legait, U., Kedous-Lebouc, A., Hardy, V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Testing directly a magnetocaloric material in a magnetic refrigeration (MR) system is the best way to judge of its applicative potentialities. In this spirit, an oxide expected to show promising magnetocaloric properties around room temperature (Pr0.65Sr0.35MnO3) was produced in large scale and shaped in order to build a regenerator. Magnetization, heat capacity, resistivity, thermal conductivity and a direct test in a MR device were carried out on this manganite. The results were compared to those observed in the reference material which is Gadolinium. The two main conclusions of these preliminary results are: (i) the Pr0.65Sr0.35MnO3 actually displays not only a significant magnetocaloric effect but also a real refrigeration capability at room temperature; (ii) the temperature spans reached in these first experiments are even found to well compare with those obtained with Gd.
ISSN:2100-014X
2100-014X
DOI:10.1051/epjconf/20122900021