so-metrizable spaces and images of metric spaces

-metrizable spaces are a class of important generalized metric spaces between metric spaces and -metrizable spaces where a space is called an -metrizable space if it has a -locally finite -network. As the further work that attaches to the celebrated Alexandrov conjecture, it is interesting to charac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open mathematics (Warsaw, Poland) Poland), 2021-11, Vol.19 (1), p.1145-1152
Hauptverfasser: Yang, Songlin, Ge, Xun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:-metrizable spaces are a class of important generalized metric spaces between metric spaces and -metrizable spaces where a space is called an -metrizable space if it has a -locally finite -network. As the further work that attaches to the celebrated Alexandrov conjecture, it is interesting to characterize -metrizable spaces by images of metric spaces. This paper gives such characterizations for -metrizable spaces. More precisely, this paper introduces -open mappings and uses the “Pomomarev’s method” to prove that a space is an -metrizable space if and only if it is an -open, compact-covering, -image of a metric space, if and only if it is an -open, -image of a metric space. In addition, it is shown that -open mapping is a simplified form of -open mapping (resp. 2-sequence-covering mapping if the domain is metrizable). Results of this paper give some new characterizations of -metrizable spaces and establish some equivalent relations among -open mapping, -open mapping and 2-sequence-covering mapping, which further enrich and deepen generalized metric space theory.
ISSN:2391-5455
2391-5455
DOI:10.1515/math-2021-0082