Predicting lung aging using scRNA-Seq data

Age prediction based on single cell RNA-Sequencing data (scRNA-Seq) can provide information for patients' susceptibility to various diseases and conditions. In addition, such analysis can be used to identify aging related genes and pathways. To enable age prediction based on scRNA-Seq data, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2024-12, Vol.20 (12), p.e1012632
Hauptverfasser: Song, Qi, Singh, Alex, McDonough, John E, Adams, Taylor S, Vos, Robin, De Man, Ruben, Myers, Greg, Ceulemans, Laurens J, Vanaudenaerde, Bart M, Wuyts, Wim A, Yan, Xiting, Schupp, Jonas, Hagood, James S, Kaminski, Naftali, Bar-Joseph, Ziv
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Age prediction based on single cell RNA-Sequencing data (scRNA-Seq) can provide information for patients' susceptibility to various diseases and conditions. In addition, such analysis can be used to identify aging related genes and pathways. To enable age prediction based on scRNA-Seq data, we developed PolyEN, a new regression model which learns continuous representation for expression over time. These representations are then used by PolyEN to integrate genes to predict an age. Existing and new lung aging data we profiled demonstrated PolyEN's improved performance over existing methods for age prediction. Our results identified lung epithelial cells as the most significant predictors for non-smokers while lung endothelial cells led to the best chronological age prediction results for smokers.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1012632