About j{\mathscr{j}}-Noetherian rings
Let be a commutative ring with identity and an ideal of . An ideal of is said to be a -ideal if . We define to be a -Noetherian ring if each -ideal of is finitely generated. In this work, we study some properties of -Noetherian rings. More precisely, we investigate -Noetherian rings via the Cohen-ty...
Gespeichert in:
Veröffentlicht in: | Open mathematics (Warsaw, Poland) Poland), 2024-05, Vol.22 (1), p.1669-1677 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
be a commutative ring with identity and
an ideal of
. An ideal
of
is said to be a
-ideal if
. We define
to be a
-Noetherian ring if each
-ideal of
is finitely generated. In this work, we study some properties of
-Noetherian rings. More precisely, we investigate
-Noetherian rings via the Cohen-type theorem, the flat extension, decomposable ring, the trivial extension ring, the amalgamated duplication, the polynomial ring extension, and the power series ring extension. |
---|---|
ISSN: | 2391-5455 2391-5455 |
DOI: | 10.1515/math-2024-0014 |