First-Principle Insight into the Ru-Doped PtSe2 Monolayer for Detection of H2 and C2H2 in Transformer Oil

Using first-principles theory, this paper investigates the sensing behavior of the Ru-doped PtSe2 (Ru-PtSe2) monolayer for two dominant gases, namely, H2 and C2H2, in the transformer oil to explore its potential as a gas sensor to evaluate the operation status of the electrical transformers. Ru-dopi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2020-12, Vol.5 (49), p.31872-31879
Hauptverfasser: Li, Dajian, Rao, Xiajin, Zhang, Lei, Zhang, Yubo, Ma, Shouxiao, Chen, Liangyuan, Yu, Zhangting
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using first-principles theory, this paper investigates the sensing behavior of the Ru-doped PtSe2 (Ru-PtSe2) monolayer for two dominant gases, namely, H2 and C2H2, in the transformer oil to explore its potential as a gas sensor to evaluate the operation status of the electrical transformers. Ru-doping prefers to go through the S1 site with the largest E b of −3.71 eV. Chemisorption is identified in the H2 and C2H2 systems with E ad obtained as −0.83 and – 2.09 eV, respectively, indicating the stronger performance of the Ru-PtSe2 monolayer upon C2H2 adsorption. Meanwhile, the obvious improvement of bandgap in the C2H2 system suggests the potential of Ru-PtSe2 monolayer as a resistance-type gas sensor for C2H2 detection. Moreover, the applied biaxial strains ranging at 1–5% give rise to various Q T and E g in two systems, indicating the tunable sensing response of the Ru-PtSe2 monolayer for gas detection with modulated strains. Our calculation proposes a novel 2D sensing material for H2 and C2H2 detection, which would be beneficial to stimulate more edge-cutting research in the gas sensing field as well.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.0c04718