First-Principle Insight into the Ru-Doped PtSe2 Monolayer for Detection of H2 and C2H2 in Transformer Oil
Using first-principles theory, this paper investigates the sensing behavior of the Ru-doped PtSe2 (Ru-PtSe2) monolayer for two dominant gases, namely, H2 and C2H2, in the transformer oil to explore its potential as a gas sensor to evaluate the operation status of the electrical transformers. Ru-dopi...
Gespeichert in:
Veröffentlicht in: | ACS omega 2020-12, Vol.5 (49), p.31872-31879 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using first-principles theory, this paper investigates the sensing behavior of the Ru-doped PtSe2 (Ru-PtSe2) monolayer for two dominant gases, namely, H2 and C2H2, in the transformer oil to explore its potential as a gas sensor to evaluate the operation status of the electrical transformers. Ru-doping prefers to go through the S1 site with the largest E b of −3.71 eV. Chemisorption is identified in the H2 and C2H2 systems with E ad obtained as −0.83 and – 2.09 eV, respectively, indicating the stronger performance of the Ru-PtSe2 monolayer upon C2H2 adsorption. Meanwhile, the obvious improvement of bandgap in the C2H2 system suggests the potential of Ru-PtSe2 monolayer as a resistance-type gas sensor for C2H2 detection. Moreover, the applied biaxial strains ranging at 1–5% give rise to various Q T and E g in two systems, indicating the tunable sensing response of the Ru-PtSe2 monolayer for gas detection with modulated strains. Our calculation proposes a novel 2D sensing material for H2 and C2H2 detection, which would be beneficial to stimulate more edge-cutting research in the gas sensing field as well. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.0c04718 |