Drug and disease signature integration identifies synergistic combinations in glioblastoma

Glioblastoma (GBM) is the most common primary adult brain tumor. Despite extensive efforts, the median survival for GBM patients is approximately 14 months. GBM therapy could benefit greatly from patient-specific targeted therapies that maximize treatment efficacy. Here we report a platform termed S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-12, Vol.9 (1), p.5315-13, Article 5315
Hauptverfasser: Stathias, Vasileios, Jermakowicz, Anna M., Maloof, Marie E., Forlin, Michele, Walters, Winston, Suter, Robert K., Durante, Michael A., Williams, Sion L., Harbour, J. William, Volmar, Claude-Henry, Lyons, Nicholas J., Wahlestedt, Claes, Graham, Regina M., Ivan, Michael E., Komotar, Ricardo J., Sarkaria, Jann N., Subramanian, Aravind, Golub, Todd R., Schürer, Stephan C., Ayad, Nagi G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glioblastoma (GBM) is the most common primary adult brain tumor. Despite extensive efforts, the median survival for GBM patients is approximately 14 months. GBM therapy could benefit greatly from patient-specific targeted therapies that maximize treatment efficacy. Here we report a platform termed SynergySeq to identify drug combinations for the treatment of GBM by integrating information from The Cancer Genome Atlas (TCGA) and the Library of Integrated Network-Based Cellular Signatures (LINCS). We identify differentially expressed genes in GBM samples and devise a consensus gene expression signature for each compound using LINCS L1000 transcriptional profiling data. The SynergySeq platform computes disease discordance and drug concordance to identify combinations of FDA-approved drugs that induce a synergistic response in GBM. Collectively, our studies demonstrate that combining disease-specific gene expression signatures with LINCS small molecule perturbagen-response signatures can identify preclinical combinations for GBM, which can potentially be tested in humans. Inherent or acquired resistance to treatment of glioblastoma (GBM) is nearly universal. Here, the authors introduce a platform to identify synergistic drug combinations for patient-specific treatment of GBM based on gene expression signatures and small molecule perturbation-response profiles.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-07659-z