Study the impact of different preparation methods on the structural and dielectric properties of nickel-zinc ferrite
In the current study, nickel-zinc ferrite nanoparticles Ni (1-x) ZnxFe2O4 (X= 0, 0.25, 0.50, 0.75, 1) have been arranged by sol-gel auto combustion and common chemical precipitation methods, The samples were described by x-ray (XRD) deflection, Fourier converts Infrared Spectroscopy (FTIR), dielectr...
Gespeichert in:
Veröffentlicht in: | Sustainable Engineering and Innovation 2021-07, Vol.3 (2), p.121-129 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the current study, nickel-zinc ferrite nanoparticles Ni (1-x) ZnxFe2O4 (X= 0, 0.25, 0.50, 0.75, 1) have been arranged by sol-gel auto combustion and common chemical precipitation methods, The samples were described by x-ray (XRD) deflection, Fourier converts Infrared Spectroscopy (FTIR), dielectric perpetual and dielectric loss element. the XRD analysis confirms the cubic lone phase spinel configuration for all the synthesized materials. Average crystalline size is estimated of the (311) peaks of the x-ray diffractogram using Scherrer’s formulation institute in the range 38.90 to 37.71 nm for sol-gel auto burning method and from 18.61 to 23.41 nm for co-precipitation method. The Fourier transform infrared spectroscopy was studied so as to assert the construction of the spinel phase and to recognize the kind of carbon remaining in the samples. The dielectric fixed and the dielectric loss factor were measured in the range between 50 Hz – 3 MHz at room temperature were located to be reduced with a rise in regularity. |
---|---|
ISSN: | 2712-0562 2712-0562 |
DOI: | 10.37868/sei.v3i2.id117 |