Hydroxamic Acid as a Potent Metal-Binding Group for Inhibiting Tyrosinase

Tyrosinase, a metalloenzyme containing a dicopper cofactor, plays a central role in synthesizing melanin from tyrosine. Many studies have aimed to identify small-molecule inhibitors of tyrosinase for pharmaceutical, cosmetic, and agricultural purposes. In this study, we report that hydroxamic acid i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants 2022-01, Vol.11 (2), p.280
Hauptverfasser: Choi, Joonhyeok, Neupane, Trilok, Baral, Rishiram, Jee, Jun-Goo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tyrosinase, a metalloenzyme containing a dicopper cofactor, plays a central role in synthesizing melanin from tyrosine. Many studies have aimed to identify small-molecule inhibitors of tyrosinase for pharmaceutical, cosmetic, and agricultural purposes. In this study, we report that hydroxamic acid is a potent metal-binding group for interacting with dicopper atoms, thereby inhibiting tyrosinase. Hydroxamate-containing molecules, including anticancer drugs targeting histone deacetylase, vorinostat and panobinostat, significantly inhibited mushroom tyrosinase, with inhibitory constants in the submicromolar range. Of the tested molecules, benzohydroxamic acid was the most potent. Its inhibitory constant of 7 nM indicates that benzohydroxamic acid is one of the most potent tyrosinase inhibitors. Results from differential scanning fluorimetry revealed that direct binding mediates inhibition. The enzyme kinetics were studied to assess the inhibitory mechanism of the hydroxamate-containing molecules. Experiments with B16F10 cell lysates confirmed that the new inhibitors are inhibitory against mammalian tyrosinase. Docking simulation data revealed intermolecular contacts between hydroxamate-containing molecules and tyrosinase.
ISSN:2076-3921
2076-3921
DOI:10.3390/antiox11020280