MTLBORKS-CNN: An Innovative Approach for Automated Convolutional Neural Network Design for Image Classification

Convolutional neural networks (CNNs) have excelled in artificial intelligence, particularly in image-related tasks such as classification and object recognition. However, manually designing CNN architectures demands significant domain expertise and involves time-consuming trial-and-error processes,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-10, Vol.11 (19), p.4115
Hauptverfasser: Ang, Koon Meng, Lim, Wei Hong, Tiang, Sew Sun, Sharma, Abhishek, Towfek, S. K., Abdelhamid, Abdelaziz A., Alharbi, Amal H., Khafaga, Doaa Sami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Convolutional neural networks (CNNs) have excelled in artificial intelligence, particularly in image-related tasks such as classification and object recognition. However, manually designing CNN architectures demands significant domain expertise and involves time-consuming trial-and-error processes, along with substantial computational resources. To overcome this challenge, an automated network design method known as Modified Teaching-Learning-Based Optimization with Refined Knowledge Sharing (MTLBORKS-CNN) is introduced. It autonomously searches for optimal CNN architectures, achieving high classification performance on specific datasets without human intervention. MTLBORKS-CNN incorporates four key features. It employs an effective encoding scheme for various network hyperparameters, facilitating the search for innovative and valid network architectures. During the modified teacher phase, it leverages a social learning concept to calculate unique exemplars that effectively guide learners while preserving diversity. In the modified learner phase, self-learning and adaptive peer learning are incorporated to enhance knowledge acquisition of learners during CNN architecture optimization. Finally, MTLBORKS-CNN employs a dual-criterion selection scheme, considering both fitness and diversity, to determine the survival of learners in subsequent generations. MTLBORKS-CNN is rigorously evaluated across nine image datasets and compared with state-of-the-art methods. The results consistently demonstrate MTLBORKS-CNN’s superiority in terms of classification accuracy and network complexity, suggesting its potential for infrastructural development of smart devices.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11194115